The Thermal Infrared Visual Object Tracking VOT-TIR2016 Challenge Results

نویسندگان

  • Michael Felsberg
  • Matej Kristan
  • Jiri Matas
  • Ales Leonardis
  • Roman P. Pflugfelder
  • Gustav Häger
  • Amanda Berg
  • Abdelrahman Eldesokey
  • Jörgen Ahlberg
  • Luka Cehovin
  • Tomás Vojír
  • Alan Lukezic
  • Gustavo Fernández
  • Alfredo Petrosino
  • Alvaro García-Martín
  • Andrés Solís Montero
  • Anton Varfolomieiev
  • Aykut Erdem
  • Bohyung Han
  • Chang-Ming Chang
  • Dawei Du
  • Erkut Erdem
  • Fahad Shahbaz Khan
  • Fatih Murat Porikli
  • Fei Zhao
  • Filiz Bunyak
  • Francesco Battistone
  • Gao Zhu
  • Guna Seetharaman
  • Hongdong Li
  • Honggang Qi
  • Horst Bischof
  • Horst Possegger
  • Hyeonseob Nam
  • Jack Valmadre
  • Jianke Zhu
  • Jiayi Feng
  • Jochen Lang
  • José María Martínez Sanchez
  • Kannappan Palaniappan
  • Karel Lebeda
  • Ke Gao
  • Krystian Mikolajczyk
  • Longyin Wen
  • Luca Bertinetto
  • Mahdieh Poostchi
  • Mario Edoardo Maresca
  • Martin Danelljan
  • Michael Arens
  • Ming Tang
  • Mooyeol Baek
  • Nana Fan
  • Noor Al-Shakarji
  • Ondrej Miksik
  • Osman Akin
  • Philip H. S. Torr
  • Qingming Huang
  • Rafael Martin Nieto
  • Rengarajan Pelapur
  • Richard Bowden
  • Robert Laganière
  • Sebastian Bernd Krah
  • Shengkun Li
  • Shizeng Yao
  • Simon Hadfield
  • Siwei Lyu
  • Stefan Becker
  • Stuart Golodetz
  • Tao Hu
  • Thomas Mauthner
  • Vincenzo Santopietro
  • Wenbo Li
  • Wolfgang Hübner
  • Xin Li
  • Yang Li
  • Zhan Xu
  • Zhenyu He
چکیده

The Thermal Infrared Visual Object Tracking challenge 2016, VOT-TIR2016, aims at comparing short-term single-object visual trackers that work on thermal infrared (TIR) sequences and do not apply pre-learned models of object appearance. VOT-TIR2016 is the second benchmark on short-term tracking in TIR sequences. Results of 24 trackers are presented. For each participating tracker, a short description is provided in the appendix. The VOT-TIR2016 challenge is similar to the 2015 challenge, the main difference is the introduction of new, more difficult sequences into the dataset. Furthermore, VOT-TIR2016 evaluation adopted the improvements regarding overlap calculation in VOT2016. Compared to VOT-TIR2015, a significant general improvement of results has been observed, which partly compensate for the more difficult sequences. The dataset, the evaluation kit, as well as the results are publicly available at the challenge website.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Overview of the Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge

The Thermal Infrared Visual Object Tracking (VOT-TIR2015) Challenge was organized in conjunction with ICCV2015. It was the first benchmark on short-term, single-target tracking in thermal infrared (TIR) sequences. The challenge aimed at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. It was based on the VOT2013 Challenge, but introdu...

متن کامل

The VOT2015 and VOT-TIR2015 Challenges Submission Report

In this report, we present the details of our submission and the evaluation results on both the visual object tracking (VOT) 2015 and the thermal infrared visual object tracking (VOT-TIR) 2015 challenges. The goal of these challenges is to compare short-term model-free single-object trackers, and serve as the de factor state-of-the-art evaluation platform for visual object tracking. In particul...

متن کامل

A thermal infrared dataset for evaluation of short-term tracking methods

During recent years, thermal cameras have decreased in both size and cost while improving image quality. The area of use for such cameras has expanded with many exciting applications, many of which require tracking of objects. While being subject to extensive research in the visual domain, tracking in thermal imagery has historically been of interest mainly for military purposes. The available ...

متن کامل

Detection and Tracking in Thermal Infrared Imagery

Thermal cameras have historically been of interest mainly for military applications. Increasing image quality and resolution combined with decreasing price and size during recent years have, however, opened up new application areas. They are now widely used for civilian applications, e.g., within industry, to search for missing persons, in automotive safety, as well as for medical applications....

متن کامل

Hierarchical Siamese Network for Thermal Infrared Object Tracking

Most thermal infrared (TIR) tracking methods are discriminative, which treat the tracking problem as a classification task. However, the objective of the classifier (label prediction) is not coupled to the objective of the tracker (location estimation). The classification task focuses on the between-class difference of the arbitrary objects, while the tracking task mainly deals with the within-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016